Jay Taylor's notes
back to listing indexA Brief Tour of FLP Impossibility : Paper Trail
[web search]Paper Trail
A Brief Tour of FLP Impossibility
One of the most important results in distributed systems theory was published in April 1985 by Fischer, Lynch and Patterson. Their short paper ‘Impossibility of Distributed Consensus with One Faulty Process’, which eventually won the Dijkstra award given to the most influential papers in distributed computing, definitively placed an upper bound on what it is possible to achieve with distributed processes in an asynchronous environment.
This particular result, known as the ‘FLP result’, settled a dispute that had been ongoing in distributed systems for the previous five to ten years. The problem of consensus – that is, getting a distributed network of processors to agree on a common value – was known to be solvable in a synchronous setting, where processes could proceed in simultaneous steps. In particular, the synchronous solution was resilient to faults, where processors crash and take no further part in the computation. Informally, synchronous models allow failures to be detected by waiting one entire step length for a reply from a processor, and presuming that it has crashed if no reply is received.
This kind of failure detection is impossible in an asynchronous setting, where there are no bounds on the amount of time a processor might take to complete its work and then respond with a message. Therefore it’s not possible to say whether a processor has crashed or is simply taking a long time to respond. The FLP result shows that in an asynchronous setting, where only one processor might crash, there is no distributed algorithm that solves the consensus problem.
In this post, I want to give a tour of the proof itself because, although it is quite subtle, it is short and profound. I’ll start by introducing consensus, and then after describing some notation and assumptions I’ll work through the main two lemmas in the paper.
If you want to follow along at home (highly, highly recommended) a copy of the paper is available here.
Consensus
The problem of consensus is genuinely fundamental to distributed systems research. Getting distributed processors to agree on a value has many, many applications. For example, the problem of deciding whether to commit a transaction to a database could be decided by a consensus algorithm between a majority of replicas. You can think of consensus as ‘voting’ for a value.
Several papers in the literature set the problem in the context of generals at different camps outside the enemy castle deciding whether or not to attack. A consensus algorithm that didn’t work would perhaps cause one general to attack while all the others stayed back – leaving the first general in trouble.
There are several variations on the consensus problem that differ in ‘strength’ – a solution to a stronger problem typically will solve weaker problems at the same time. A strong form of consensus is as follows:
Given a set of processors, each with an initial value:
- All non-faulty processes eventually decide on a value
- All processes that decide do so on the same value
- The value that has been decided must have proposed by some process
These three properties are referred to as termination, agreement and validity. Any algorithm that has these three properties can be said to solve the consensus problem.
Termination and agreement are fairly self explanatory – note that we explicitly do not require any particular behaviour from faulty nodes, which is just as well: they’re faulty! Validity is slightly more subtle, although it seems reasonable. The idea behind validity is that we want to exclude trivial solutions that just decide ‘No’ whatever the initial set of values is. Such an algorithm would satisfy termination and agreement, but would be completely vacuous, and no use to use at all.
The FLP proof actually concerns a slightly weaker form of consensus – for termination it is enough only that some non-faulty process decides. Note that it’s not enough to have one distinguished process that always decides its own value, as that process might fail, and another will have to take its place for even weak termination to be satisfied.
Clearly a solution to strong consensus will be a perfectly good solution for weak consensus as well, so by ruling out the possibility of the latter the FLP result similarly precludes a solution to the former.
For simplicity, the authors consider that the only values possible are 0 and 1. Every argument in the paper generalises to more values.
System Model
You can’t reasonably talk about a distributed algorithm without talking about the context it is designed to execute in and the assumptions it makes about the underlying distributed system. This set of assumptions is known as the system model and its choice has a profound effect on what algorithms are appropriate. Indeed, this paper is concerned entirely with an impossibility result on one particular class of system models.
There is a huge variety in system models, ranging from those based solidly on real-world experience to more theoretical models. Most share some basic properties in common: a network of distributed processors which are vertices in a connected graph where the edges are communication links along which messages may be sent. The variation comes in how each processor views the passage of time, whether links are reliable and how – if at all – processors are allowed to fail.
The FLP result is based on the asynchronous model, which is actually a class of models which exhibit certain properties of timing. The main characteristic of asynchronous models is that there is no upper bound on the amount of time processors may take to receive, process and respond to an incoming message. Therefore it is impossible to tell if a processor has failed, or is simply taking a long time to do its processing. The asynchronous model is a weak one, but not completely physically unrealistic. We have all encountered web servers that seem to take an arbitrarily long time to serve us a page. Now that mobile ad-hoc networks are becoming more and more pervasive, we see that devices in those networks may power down during processing to save battery, only to reappear later and continue as though nothing had happened. This introduces an arbitrary delay which fits the asynchronous model.
Other models are arguably more appropriate for networks like the Internet, but the asynchronous model is very general without being completely unrealistic.
The communication links between processors are assumed to be reliable. It was well known that given arbitrarily unreliable links no solution for consensus could be found even in a synchronous model; therefore by assuming reliable links and yet still proving consensus impossible in an asynchronous system the FLP result is made stronger. TCP gives reliable enough message delivery that this is a realistic assumption.
Processors are allowed to fail according to the fail-stop model – this simply means that processors that fail do so by ceasing to work correctly. There are more general failure models, such as Byzantine failures where processors fail by deviating arbitrarily from the algorithm they are executing. Again, by strengthening the model – by making strong assumptions about what is possible – the authors make their result much more general. The argument is as follows: if a given problem is proven unsolvable in a very restricted environment where only a few things can go wrong, it will certainly be unsolvable in an environment where yet more things can go wrong.
Formal Model
In order to formally model these properties, some notation needs to be introduced. In section 2 of the paper the system model is carefully defined. There are