Jay Taylor's notes
back to listing indexpostgres/postgres
[web search]
Original source (github.com)
Clipped on: 2019-07-30
Skip to content
1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * parse_target.c |
4 | * handle target lists |
5 | * |
6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | * |
9 | * |
10 | * IDENTIFICATION |
11 | * src/backend/parser/parse_target.c |
12 | * |
13 | *------------------------------------------------------------------------- |
14 | */ |
15 | #include "postgres.h" |
16 | |
17 | #include "catalog/pg_type.h" |
18 | #include "commands/dbcommands.h" |
19 | #include "funcapi.h" |
20 | #include "miscadmin.h" |
21 | #include "nodes/makefuncs.h" |
22 | #include "nodes/nodeFuncs.h" |
23 | #include "parser/parsetree.h" |
24 | #include "parser/parse_coerce.h" |
25 | #include "parser/parse_expr.h" |
26 | #include "parser/parse_func.h" |
27 | #include "parser/parse_relation.h" |
28 | #include "parser/parse_target.h" |
29 | #include "parser/parse_type.h" |
30 | #include "utils/builtins.h" |
31 | #include "utils/lsyscache.h" |
32 | #include "utils/rel.h" |
33 | #include "utils/typcache.h" |
34 | |
35 | |
36 | static void markTargetListOrigin(ParseState *pstate, TargetEntry *tle, |
37 | Var *var, int levelsup); |
38 | static Node *transformAssignmentIndirection(ParseState *pstate, |
39 | Node *basenode, |
40 | const char *targetName, |
41 | bool targetIsSubscripting, |
42 | Oid targetTypeId, |
43 | int32 targetTypMod, |
44 | Oid targetCollation, |
45 | List *indirection, |
46 | ListCell *indirection_cell, |
47 | Node *rhs, |
48 | int location); |
49 | static Node *transformAssignmentSubscripts(ParseState *pstate, |
50 | Node *basenode, |
51 | const char *targetName, |
52 | Oid targetTypeId, |
53 | int32 targetTypMod, |
54 | Oid targetCollation, |
55 | List *subscripts, |
56 | bool isSlice, |
57 | List *indirection, |
58 | ListCell *next_indirection, |
59 | Node *rhs, |
60 | int location); |
61 | static List *ExpandColumnRefStar(ParseState *pstate, ColumnRef *cref, |
62 | bool make_target_entry); |
63 | static List *ExpandAllTables(ParseState *pstate, int location); |
64 | static List *ExpandIndirectionStar(ParseState *pstate, A_Indirection *ind, |
65 | bool make_target_entry, ParseExprKind exprKind); |
66 | static List *ExpandSingleTable(ParseState *pstate, RangeTblEntry *rte, |
67 | int location, bool make_target_entry); |
68 | static List *ExpandRowReference(ParseState *pstate, Node *expr, |
69 | bool make_target_entry); |
70 | static int FigureColnameInternal(Node *node, char **name); |
71 | |
72 | |
73 | /* |
74 | * transformTargetEntry() |
75 | * Transform any ordinary "expression-type" node into a targetlist entry. |
76 | * This is exported so that parse_clause.c can generate targetlist entries |
77 | * for ORDER/GROUP BY items that are not already in the targetlist. |
78 | * |
79 | * node the (untransformed) parse tree for the value expression. |
80 | * expr the transformed expression, or NULL if caller didn't do it yet. |
81 | * exprKind expression kind (EXPR_KIND_SELECT_TARGET, etc) |
82 | * colname the column name to be assigned, or NULL if none yet set. |
83 | * resjunk true if the target should be marked resjunk, ie, it is not |
84 | * wanted in the final projected tuple. |
85 | */ |
86 | TargetEntry * |
87 | transformTargetEntry(ParseState *pstate, |
88 | Node *node, |
89 | Node *expr, |
90 | ParseExprKind exprKind, |
91 | char *colname, |
92 | bool resjunk) |
93 | { |
94 | /* Transform the node if caller didn't do it already */ |
95 | if (expr == NULL) |
96 | { |
97 | /* |
98 | * If it's a SetToDefault node and we should allow that, pass it |
99 | * through unmodified. (transformExpr will throw the appropriate |
100 | * error if we're disallowing it.) |
101 | */ |
102 | if (exprKind == EXPR_KIND_UPDATE_SOURCE && IsA(node, SetToDefault)) |
103 | expr = node; |
104 | else |
105 | expr = transformExpr(pstate, node, exprKind); |
106 | } |
107 | |
108 | if (colname == NULL && !resjunk) |
109 | { |
110 | /* |
111 | * Generate a suitable column name for a column without any explicit |
112 | * 'AS ColumnName' clause. |
113 | */ |
114 | colname = FigureColname(node); |
115 | } |
116 | |
117 | return makeTargetEntry((Expr *) expr, |
118 | (AttrNumber) pstate->p_next_resno++, |
119 | colname, |
120 | resjunk); |
121 | } |
122 | |
123 | |
124 | /* |
125 | * transformTargetList() |
126 | * Turns a list of ResTarget's into a list of TargetEntry's. |
127 | * |
128 | * This code acts mostly the same for SELECT, UPDATE, or RETURNING lists; |
129 | * the main thing is to transform the given expressions (the "val" fields). |
130 | * The exprKind parameter distinguishes these cases when necessary. |
131 | */ |
132 | List * |
133 | transformTargetList(ParseState *pstate, List *targetlist, |
134 | ParseExprKind exprKind) |
135 | { |
136 | List *p_target = NIL; |
137 | bool expand_star; |
138 | ListCell *o_target; |
139 | |
140 | /* Shouldn't have any leftover multiassign items at start */ |
141 | Assert(pstate->p_multiassign_exprs == NIL); |
142 | |
143 | /* Expand "something.*" in SELECT and RETURNING, but not UPDATE */ |
144 | expand_star = (exprKind != EXPR_KIND_UPDATE_SOURCE); |
145 | |
146 | foreach(o_target, targetlist) |
147 | { |
148 | ResTarget *res = (ResTarget *) lfirst(o_target); |
149 | |
150 | /* |
151 | * Check for "something.*". Depending on the complexity of the |
152 | * "something", the star could appear as the last field in ColumnRef, |
153 | * or as the last indirection item in A_Indirection. |
154 | */ |
155 | if (expand_star) |
156 | { |
157 | if (IsA(res->val, ColumnRef)) |
158 | { |
159 | ColumnRef *cref = (ColumnRef *) res->val; |
160 | |
161 | if (IsA(llast(cref->fields), A_Star)) |
162 | { |
163 | /* It is something.*, expand into multiple items */ |
164 | p_target = list_concat(p_target, |
165 | ExpandColumnRefStar(pstate, |
166 | cref, |
167 | true)); |
168 | continue; |
169 | } |
170 | } |
171 | else if (IsA(res->val, A_Indirection)) |
172 | { |
173 | A_Indirection *ind = (A_Indirection *) res->val; |
174 | |
175 | if (IsA(llast(ind->indirection), A_Star)) |
176 | { |
177 | /* It is something.*, expand into multiple items */ |
178 | p_target = list_concat(p_target, |
179 | ExpandIndirectionStar(pstate, |
180 | ind, |
181 | true, |
182 | exprKind)); |
183 | continue; |
184 | } |
185 | } |
186 | } |
187 | |
188 | /* |
189 | * Not "something.*", or we want to treat that as a plain whole-row |
190 | * variable, so transform as a single expression |
191 | */ |
192 | p_target = lappend(p_target, |
193 | transformTargetEntry(pstate, |
194 | res->val, |
195 | NULL, |
196 | exprKind, |
197 | res->name, |
198 | false)); |
199 | } |
200 | |
201 | /* |
202 | * If any multiassign resjunk items were created, attach them to the end |
203 | * of the targetlist. This should only happen in an UPDATE tlist. We |
204 | * don't need to worry about numbering of these items; transformUpdateStmt |
205 | * will set their resnos. |
206 | */ |
207 | if (pstate->p_multiassign_exprs) |
208 | { |
209 | Assert(exprKind == EXPR_KIND_UPDATE_SOURCE); |
210 | p_target = list_concat(p_target, pstate->p_multiassign_exprs); |
211 | pstate->p_multiassign_exprs = NIL; |
212 | } |
213 | |
214 | return p_target; |
215 | } |
216 | |
217 | |
218 | /* |
219 | * transformExpressionList() |
220 | * |
221 | * This is the identical transformation to transformTargetList, except that |
222 | * the input list elements are bare expressions without ResTarget decoration, |
223 | * and the output elements are likewise just expressions without TargetEntry |
224 | * decoration. We use this for ROW() and VALUES() constructs. |
225 | * |
226 | * exprKind is not enough to tell us whether to allow SetToDefault, so |
227 | * an additional flag is needed for that. |
228 | */ |
229 | List * |
230 | transformExpressionList(ParseState *pstate, List *exprlist, |
231 | ParseExprKind exprKind, bool allowDefault) |
232 | { |
233 | List *result = NIL; |
234 | ListCell *lc; |
235 | |
236 | foreach(lc, exprlist) |
237 | { |
238 | Node *e = (Node *) lfirst(lc); |
239 | |
240 | /* |
241 | * Check for "something.*". Depending on the complexity of the |
242 | * "something", the star could appear as the last field in ColumnRef, |
243 | * or as the last indirection item in A_Indirection. |
244 | */ |
245 | if (IsA(e, ColumnRef)) |
246 | { |
247 | ColumnRef *cref = (ColumnRef *) e; |
248 | |
249 | if (IsA(llast(cref->fields), A_Star)) |
250 | { |
251 | /* It is something.*, expand into multiple items */ |
252 | result = list_concat(result, |
253 | ExpandColumnRefStar(pstate, cref, |
254 | false)); |
255 | continue; |
256 | } |
257 | } |
258 | else if (IsA(e, A_Indirection)) |
259 | { |
260 | A_Indirection *ind = (A_Indirection *) e; |
261 | |
262 | if (IsA(llast(ind->indirection), A_Star)) |
263 | { |
264 | /* It is something.*, expand into multiple items */ |
265 | result = list_concat(result, |
266 | ExpandIndirectionStar(pstate, ind, |
267 | false, exprKind)); |
268 | continue; |
269 | } |
270 | } |
271 | |
272 | /* |
273 | * Not "something.*", so transform as a single expression. If it's a |
274 | * SetToDefault node and we should allow that, pass it through |
275 | * unmodified. (transformExpr will throw the appropriate error if |
276 | * we're disallowing it.) |
277 | */ |
278 | if (allowDefault && IsA(e, SetToDefault)) |
279 | /* do nothing */ ; |
280 | else |
281 | e = transformExpr(pstate, e, exprKind); |
282 | |
283 | result = lappend(result, e); |
284 | } |
285 | |
286 | /* Shouldn't have any multiassign items here */ |
287 | Assert(pstate->p_multiassign_exprs == NIL); |
288 | |
289 | return result; |
290 | } |
291 | |
292 | |
293 | /* |
294 | * resolveTargetListUnknowns() |
295 | * Convert any unknown-type targetlist entries to type TEXT. |
296 | * |
297 | * We do this after we've exhausted all other ways of identifying the output |
298 | * column types of a query. |
299 | */ |
300 | void |
301 | resolveTargetListUnknowns(ParseState *pstate, List *targetlist) |
302 | { |
303 | ListCell *l; |
304 | |
305 | foreach(l, targetlist) |
306 | { |
307 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
308 | Oid restype = exprType((Node *) tle->expr); |
309 | |
310 | if (restype == UNKNOWNOID) |
311 | { |
312 | tle->expr = (Expr *) coerce_type(pstate, (Node *) tle->expr, |
313 | restype, TEXTOID, -1, |
314 | COERCION_IMPLICIT, |
315 | COERCE_IMPLICIT_CAST, |
316 | -1); |
317 | } |
318 | } |
319 | } |
320 | |
321 | |
322 | /* |
323 | * markTargetListOrigins() |
324 | * Mark targetlist columns that are simple Vars with the source |
325 | * table's OID and column number. |
326 | * |
327 | * Currently, this is done only for SELECT targetlists and RETURNING lists, |
328 | * since we only need the info if we are going to send it to the frontend. |
329 | */ |
330 | void |
331 | markTargetListOrigins(ParseState *pstate, List *targetlist) |
332 | { |
333 | ListCell *l; |
334 | |
335 | foreach(l, targetlist) |
336 | { |
337 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
338 | |
339 | markTargetListOrigin(pstate, tle, (Var *) tle->expr, 0); |
340 | } |
341 | } |
342 | |
343 | /* |
344 | * markTargetListOrigin() |
345 | * If 'var' is a Var of a plain relation, mark 'tle' with its origin |
346 | * |
347 | * levelsup is an extra offset to interpret the Var's varlevelsup correctly. |
348 | * |
349 | * This is split out so it can recurse for join references. Note that we |
350 | * do not drill down into views, but report the view as the column owner. |
351 | */ |
352 | static void |
353 | markTargetListOrigin(ParseState *pstate, TargetEntry *tle, |
354 | Var *var, int levelsup) |
355 | { |
356 | int netlevelsup; |
357 | RangeTblEntry *rte; |
358 | AttrNumber attnum; |
359 | |
360 | if (var == NULL || !IsA(var, Var)) |
361 | return; |
362 | netlevelsup = var->varlevelsup + levelsup; |
363 | rte = GetRTEByRangeTablePosn(pstate, var->varno, netlevelsup); |
364 | attnum = var->varattno; |
365 | |
366 | switch (rte->rtekind) |
367 | { |
368 | case RTE_RELATION: |
369 | /* It's a table or view, report it */ |
370 | tle->resorigtbl = rte->relid; |
371 | tle->resorigcol = attnum; |
372 | break; |
373 | case RTE_SUBQUERY: |
374 | /* Subselect-in-FROM: copy up from the subselect */ |
375 | if (attnum != InvalidAttrNumber) |
376 | { |
377 | TargetEntry *ste = get_tle_by_resno(rte->subquery->targetList, |
378 | attnum); |
379 | |
380 | if (ste == NULL || ste->resjunk) |
381 | elog(ERROR, "subquery %s does not have attribute %d", |
382 | rte->eref->aliasname, attnum); |
383 | tle->resorigtbl = ste->resorigtbl; |
384 | tle->resorigcol = ste->resorigcol; |
385 | } |
386 | break; |
387 | case RTE_JOIN: |
388 | /* Join RTE --- recursively inspect the alias variable */ |
389 | if (attnum != InvalidAttrNumber) |
390 | { |
391 | Var *aliasvar; |
392 | |
393 | Assert(attnum > 0 && attnum <= list_length(rte->joinaliasvars)); |
394 | aliasvar = (Var *) list_nth(rte->joinaliasvars, attnum - 1); |
395 | /* We intentionally don't strip implicit coercions here */ |
396 | markTargetListOrigin(pstate, tle, aliasvar, netlevelsup); |
397 | } |
398 | break; |
399 | case RTE_FUNCTION: |
400 | case RTE_VALUES: |
401 | case RTE_TABLEFUNC: |
402 | case RTE_NAMEDTUPLESTORE: |
403 | case RTE_RESULT: |
404 | /* not a simple relation, leave it unmarked */ |
405 | break; |
406 | case RTE_CTE: |
407 | |
408 | /* |
409 | * CTE reference: copy up from the subquery, if possible. If the |
410 | * RTE is a recursive self-reference then we can't do anything |
411 | * because we haven't finished analyzing it yet. However, it's no |
412 | * big loss because we must be down inside the recursive term of a |
413 | * recursive CTE, and so any markings on the current targetlist |
414 | * are not going to affect the results anyway. |
415 | */ |
416 | if (attnum != InvalidAttrNumber && !rte->self_reference) |
417 | { |
418 | CommonTableExpr *cte = GetCTEForRTE(pstate, rte, netlevelsup); |
419 | TargetEntry *ste; |
420 | |
421 | ste = get_tle_by_resno(GetCTETargetList(cte), attnum); |
422 | if (ste == NULL || ste->resjunk) |
423 | elog(ERROR, "subquery %s does not have attribute %d", |
424 | rte->eref->aliasname, attnum); |
425 | tle->resorigtbl = ste->resorigtbl; |
426 | tle->resorigcol = ste->resorigcol; |
427 | } |
428 | break; |
429 | } |
430 | } |
431 | |
432 | |
433 | /* |
434 | * transformAssignedExpr() |
435 | * This is used in INSERT and UPDATE statements only. It prepares an |
436 | * expression for assignment to a column of the target table. |
437 | * This includes coercing the given value to the target column's type |
438 | * (if necessary), and dealing with any subfield names or subscripts |
439 | * attached to the target column itself. The input expression has |
440 | * already been through transformExpr(). |
441 | * |
442 | * pstate parse state |
443 | * expr expression to be modified |
444 | * exprKind indicates which type of statement we're dealing with |
445 | * colname target column name (ie, name of attribute to be assigned to) |
446 | * attrno target attribute number |
447 | * indirection subscripts/field names for target column, if any |
448 | * location error cursor position for the target column, or -1 |
449 | * |
450 | * Returns the modified expression. |
451 | * |
452 | * Note: location points at the target column name (SET target or INSERT |
453 | * column name list entry), and must therefore be -1 in an INSERT that |
454 | * omits the column name list. So we should usually prefer to use |
455 | * exprLocation(expr) for errors that can happen in a default INSERT. |
456 | */ |
457 | Expr * |
458 | transformAssignedExpr(ParseState *pstate, |
459 | Expr *expr, |
460 | ParseExprKind exprKind, |
461 | const char *colname, |
462 | int attrno, |
463 | List *indirection, |
464 | int location) |
465 | { |
466 | Relation rd = pstate->p_target_relation; |
467 | Oid type_id; /* type of value provided */ |
468 | Oid attrtype; /* type of target column */ |
469 | int32 attrtypmod; |
470 | Oid attrcollation; /* collation of target column */ |
471 | ParseExprKind sv_expr_kind; |
472 | |
473 | /* |
474 | * Save and restore identity of expression type we're parsing. We must |
475 | * set p_expr_kind here because we can parse subscripts without going |
476 | * through transformExpr(). |
477 | */ |
478 | Assert(exprKind != EXPR_KIND_NONE); |
479 | sv_expr_kind = pstate->p_expr_kind; |
480 | pstate->p_expr_kind = exprKind; |
481 | |
482 | Assert(rd != NULL); |
483 | if (attrno <= 0) |
484 | ereport(ERROR, |
485 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
486 | errmsg("cannot assign to system column \"%s\"", |
487 | colname), |
488 | parser_errposition(pstate, location))); |
489 | attrtype = attnumTypeId(rd, attrno); |
490 | attrtypmod = TupleDescAttr(rd->rd_att, attrno - 1)->atttypmod; |
491 | attrcollation = TupleDescAttr(rd->rd_att, attrno - 1)->attcollation; |
492 | |
493 | /* |
494 | * If the expression is a DEFAULT placeholder, insert the attribute's |
495 | * type/typmod/collation into it so that exprType etc will report the |
496 | * right things. (We expect that the eventually substituted default |
497 | * expression will in fact have this type and typmod. The collation |
498 | * likely doesn't matter, but let's set it correctly anyway.) Also, |
499 | * reject trying to update a subfield or array element with DEFAULT, since |
500 | * there can't be any default for portions of a column. |
501 | */ |
502 | if (expr && IsA(expr, SetToDefault)) |
503 | { |
504 | SetToDefault *def = (SetToDefault *) expr; |
505 | |
506 | def->typeId = attrtype; |
507 | def->typeMod = attrtypmod; |
508 | def->collation = attrcollation; |
509 | if (indirection) |
510 | { |
511 | if (IsA(linitial(indirection), A_Indices)) |
512 | ereport(ERROR, |
513 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
514 | errmsg("cannot set an array element to DEFAULT"), |
515 | parser_errposition(pstate, location))); |
516 | else |
517 | ereport(ERROR, |
518 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
519 | errmsg("cannot set a subfield to DEFAULT"), |
520 | parser_errposition(pstate, location))); |
521 | } |
522 | } |
523 | |
524 | /* Now we can use exprType() safely. */ |
525 | type_id = exprType((Node *) expr); |
526 | |
527 | /* |
528 | * If there is indirection on the target column, prepare an array or |
529 | * subfield assignment expression. This will generate a new column value |
530 | * that the source value has been inserted into, which can then be placed |
531 | * in the new tuple constructed by INSERT or UPDATE. |
532 | */ |
533 | if (indirection) |
534 | { |
535 | Node *colVar; |
536 | |
537 | if (pstate->p_is_insert) |
538 | { |
539 | /* |
540 | * The command is INSERT INTO table (col.something) ... so there |
541 | * is not really a source value to work with. Insert a NULL |
542 | * constant as the source value. |
543 | */ |
544 | colVar = (Node *) makeNullConst(attrtype, attrtypmod, |
545 | attrcollation); |
546 | } |
547 | else |
548 | { |
549 | /* |
550 | * Build a Var for the column to be updated. |
551 | */ |
552 | colVar = (Node *) make_var(pstate, |
553 | pstate->p_target_rangetblentry, |
554 | attrno, |
555 | location); |
556 | } |
557 | |
558 | expr = (Expr *) |
559 | transformAssignmentIndirection(pstate, |
560 | colVar, |
561 | colname, |
562 | false, |
563 | attrtype, |
564 | attrtypmod, |
565 | attrcollation, |
566 | indirection, |
567 | list_head(indirection), |
568 | (Node *) expr, |
569 | location); |
570 | } |
571 | else |
572 | { |
573 | /* |
574 | * For normal non-qualified target column, do type checking and |
575 | * coercion. |
576 | */ |
577 | Node *orig_expr = (Node *) expr; |
578 | |
579 | expr = (Expr *) |
580 | coerce_to_target_type(pstate, |
581 | orig_expr, type_id, |
582 | attrtype, attrtypmod, |
583 | COERCION_ASSIGNMENT, |
584 | COERCE_IMPLICIT_CAST, |
585 | -1); |
586 | if (expr == NULL) |
587 | ereport(ERROR, |
588 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
589 | errmsg("column \"%s\" is of type %s" |
590 | " but expression is of type %s", |
591 | colname, |
592 | format_type_be(attrtype), |
593 | format_type_be(type_id)), |
594 | errhint("You will need to rewrite or cast the expression."), |
595 | parser_errposition(pstate, exprLocation(orig_expr)))); |
596 | } |
597 | |
598 | pstate->p_expr_kind = sv_expr_kind; |
599 | |
600 | return expr; |
601 | } |
602 | |
603 | |
604 | /* |
605 | * updateTargetListEntry() |
606 | * This is used in UPDATE statements (and ON CONFLICT DO UPDATE) |
607 | * only. It prepares an UPDATE TargetEntry for assignment to a |
608 | * column of the target table. This includes coercing the given |
609 | * value to the target column's type (if necessary), and dealing with |
610 | * any subfield names or subscripts attached to the target column |
611 | * itself. |
612 | * |
613 | * pstate parse state |
614 | * tle target list entry to be modified |
615 | * colname target column name (ie, name of attribute to be assigned to) |
616 | * attrno target attribute number |
617 | * indirection subscripts/field names for target column, if any |
618 | * location error cursor position (should point at column name), or -1 |
619 | */ |
620 | void |
621 | updateTargetListEntry(ParseState *pstate, |
622 | TargetEntry *tle, |
623 | char *colname, |
624 | int attrno, |
625 | List *indirection, |
626 | int location) |
627 | { |
628 | /* Fix up expression as needed */ |
629 | tle->expr = transformAssignedExpr(pstate, |
630 | tle->expr, |
631 | EXPR_KIND_UPDATE_TARGET, |
632 | colname, |
633 | attrno, |
634 | indirection, |
635 | location); |
636 | |
637 | /* |
638 | * Set the resno to identify the target column --- the rewriter and |
639 | * planner depend on this. We also set the resname to identify the target |
640 | * column, but this is only for debugging purposes; it should not be |
641 | * relied on. (In particular, it might be out of date in a stored rule.) |
642 | */ |
643 | tle->resno = (AttrNumber) attrno; |
644 | tle->resname = colname; |
645 | } |
646 | |
647 | |
648 | /* |
649 | * Process indirection (field selection or subscripting) of the target |
650 | * column in INSERT/UPDATE. This routine recurses for multiple levels |
651 | * of indirection --- but note that several adjacent A_Indices nodes in |
652 | * the indirection list are treated as a single multidimensional subscript |
653 | * operation. |
654 | * |
655 | * In the initial call, basenode is a Var for the target column in UPDATE, |
656 | * or a null Const of the target's type in INSERT. In recursive calls, |
657 | * basenode is NULL, indicating that a substitute node should be consed up if |
658 | * needed. |
659 | * |
660 | * targetName is the name of the field or subfield we're assigning to, and |
661 | * targetIsSubscripting is true if we're subscripting it. These are just for |
662 | * error reporting. |
663 | * |
664 | * targetTypeId, targetTypMod, targetCollation indicate the datatype and |
665 | * collation of the object to be assigned to (initially the target column, |
666 | * later some subobject). |
667 | * |
668 | * indirection is the list of indirection nodes, and indirection_cell is the |
669 | * start of the sublist remaining to process. When it's NULL, we're done |
670 | * recursing and can just coerce and return the RHS. |
671 | * |
672 | * rhs is the already-transformed value to be assigned; note it has not been |
673 | * coerced to any particular type. |
674 | * |
675 | * location is the cursor error position for any errors. (Note: this points |
676 | * to the head of the target clause, eg "foo" in "foo.bar[baz]". Later we |
677 | * might want to decorate indirection cells with their own location info, |
678 | * in which case the location argument could probably be dropped.) |
679 | */ |
680 | static Node * |
681 | transformAssignmentIndirection(ParseState *pstate, |
682 | Node *basenode, |
683 | const char *targetName, |
684 | bool targetIsSubscripting, |
685 | Oid targetTypeId, |
686 | int32 targetTypMod, |
687 | Oid targetCollation, |
688 | List *indirection, |
689 | ListCell *indirection_cell, |
690 | Node *rhs, |
691 | int location) |
692 | { |
693 | Node *result; |
694 | List *subscripts = NIL; |
695 | bool isSlice = false; |
696 | ListCell *i; |
697 | |
698 | if (indirection_cell && !basenode) |
699 | { |
700 | /* |
701 | * Set up a substitution. We abuse CaseTestExpr for this. It's safe |
702 | * to do so because the only nodes that will be above the CaseTestExpr |
703 | * in the finished expression will be FieldStore and SubscriptingRef |
704 | * nodes. (There could be other stuff in the tree, but it will be |
705 | * within other child fields of those node types.) |
706 | */ |
707 | CaseTestExpr *ctest = makeNode(CaseTestExpr); |
708 | |
709 | ctest->typeId = targetTypeId; |
710 | ctest->typeMod = targetTypMod; |
711 | ctest->collation = targetCollation; |
712 | basenode = (Node *) ctest; |
713 | } |
714 | |
715 | /* |
716 | * We have to split any field-selection operations apart from |
717 | * subscripting. Adjacent A_Indices nodes have to be treated as a single |
718 | * multidimensional subscript operation. |
719 | */ |
720 | for_each_cell(i, indirection, indirection_cell) |
721 | { |
722 | Node *n = lfirst(i); |
723 | |
724 | if (IsA(n, A_Indices)) |
725 | { |
726 | subscripts = lappend(subscripts, n); |
727 | if (((A_Indices *) n)->is_slice) |
728 | isSlice = true; |
729 | } |
730 | else if (IsA(n, A_Star)) |
731 | { |
732 | ereport(ERROR, |
733 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
734 | errmsg("row expansion via \"*\" is not supported here"), |
735 | parser_errposition(pstate, location))); |
736 | } |
737 | else |
738 | { |
739 | FieldStore *fstore; |
740 | Oid baseTypeId; |
741 | int32 baseTypeMod; |
742 | Oid typrelid; |
743 | AttrNumber attnum; |
744 | Oid fieldTypeId; |
745 | int32 fieldTypMod; |
746 | Oid fieldCollation; |
747 | |
748 | Assert(IsA(n, String)); |
749 | |
750 | /* process subscripts before this field selection */ |
751 | if (subscripts) |
752 | { |
753 | /* recurse, and then return because we're done */ |
754 | return transformAssignmentSubscripts(pstate, |
755 | basenode, |
756 | targetName, |
757 | targetTypeId, |
758 | targetTypMod, |
759 | targetCollation, |
760 | subscripts, |
761 | isSlice, |
762 | indirection, |
763 | i, |
764 | rhs, |
765 | location); |
766 | } |
767 | |
768 | /* No subscripts, so can process field selection here */ |
769 | |
770 | /* |
771 | * Look up the composite type, accounting for possibility that |
772 | * what we are given is a domain over composite. |
773 | */ |
774 | baseTypeMod = targetTypMod; |
775 | baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod); |
776 | |
777 | typrelid = typeidTypeRelid(baseTypeId); |
778 | if (!typrelid) |
779 | ereport(ERROR, |
780 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
781 | errmsg("cannot assign to field \"%s\" of column \"%s\" because its type %s is not a composite type", |
782 | strVal(n), targetName, |
783 | format_type_be(targetTypeId)), |
784 | parser_errposition(pstate, location))); |
785 | |
786 | attnum = get_attnum(typrelid, strVal(n)); |
787 | if (attnum == InvalidAttrNumber) |
788 | ereport(ERROR, |
789 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
790 | errmsg("cannot assign to field \"%s\" of column \"%s\" because there is no such column in data type %s", |
791 | strVal(n), targetName, |
792 | format_type_be(targetTypeId)), |
793 | parser_errposition(pstate, location))); |
794 | if (attnum < 0) |
795 | ereport(ERROR, |
796 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
797 | errmsg("cannot assign to system column \"%s\"", |
798 | strVal(n)), |
799 | parser_errposition(pstate, location))); |
800 | |
801 | get_atttypetypmodcoll(typrelid, attnum, |
802 | &fieldTypeId, &fieldTypMod, &fieldCollation); |
803 | |
804 | /* recurse to create appropriate RHS for field assign */ |
805 | rhs = transformAssignmentIndirection(pstate, |
806 | NULL, |
807 | strVal(n), |
808 | false, |
809 | fieldTypeId, |
810 | fieldTypMod, |
811 | fieldCollation, |
812 | indirection, |
813 | lnext(indirection, i), |
814 | rhs, |
815 | location); |
816 | |
817 | /* and build a FieldStore node */ |
818 | fstore = makeNode(FieldStore); |
819 | fstore->arg = (Expr *) basenode; |
820 | fstore->newvals = list_make1(rhs); |
821 | fstore->fieldnums = list_make1_int(attnum); |
822 | fstore->resulttype = baseTypeId; |
823 | |
824 | /* If target is a domain, apply constraints */ |
825 | if (baseTypeId != targetTypeId) |
826 | return coerce_to_domain((Node *) fstore, |
827 | baseTypeId, baseTypeMod, |
828 | targetTypeId, |
829 | COERCION_IMPLICIT, |
830 | COERCE_IMPLICIT_CAST, |
831 | location, |
832 | false); |
833 | |
834 | return (Node *) fstore; |
835 | } |
836 | } |
837 | |
838 | /* process trailing subscripts, if any */ |
839 | if (subscripts) |
840 | { |
841 | /* recurse, and then return because we're done */ |
842 | return transformAssignmentSubscripts(pstate, |
843 | basenode, |
844 | targetName, |
845 | targetTypeId, |
846 | targetTypMod, |
847 | targetCollation, |
848 | subscripts, |
849 | isSlice, |
850 | indirection, |
851 | NULL, |
852 | rhs, |
853 | location); |
854 | } |
855 | |
856 | /* base case: just coerce RHS to match target type ID */ |
857 | |
858 | result = coerce_to_target_type(pstate, |
859 | rhs, exprType(rhs), |
860 | targetTypeId, targetTypMod, |
861 | COERCION_ASSIGNMENT, |
862 | COERCE_IMPLICIT_CAST, |
863 | -1); |
864 | if (result == NULL) |
865 | { |
866 | if (targetIsSubscripting) |
867 | ereport(ERROR, |
868 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
869 | errmsg("array assignment to \"%s\" requires type %s" |
870 | " but expression is of type %s", |
871 | targetName, |
872 | format_type_be(targetTypeId), |
873 | format_type_be(exprType(rhs))), |
874 | errhint("You will need to rewrite or cast the expression."), |
875 | parser_errposition(pstate, location))); |
876 | else |
877 | ereport(ERROR, |
878 | (errcode(ERRCODE_DATATYPE_MISMATCH), |
879 | errmsg("subfield \"%s\" is of type %s" |
880 | " but expression is of type %s", |
881 | targetName, |
882 | format_type_be(targetTypeId), |
883 | format_type_be(exprType(rhs))), |
884 | errhint("You will need to rewrite or cast the expression."), |
885 | parser_errposition(pstate, location))); |
886 | } |
887 | |
888 | return result; |
889 | } |
890 | |
891 | /* |
892 | * helper for transformAssignmentIndirection: process container assignment |
893 | */ |
894 | static Node * |
895 | transformAssignmentSubscripts(ParseState *pstate, |
896 | Node *basenode, |
897 | const char *targetName, |
898 | Oid targetTypeId, |
899 | int32 targetTypMod, |
900 | Oid targetCollation, |
901 | List *subscripts, |
902 | bool isSlice, |
903 | List *indirection, |
904 | ListCell *next_indirection, |
905 | Node *rhs, |
906 | int location) |
907 | { |
908 | Node *result; |
909 | Oid containerType; |
910 | int32 containerTypMod; |
911 | Oid elementTypeId; |
912 | Oid typeNeeded; |
913 | Oid collationNeeded; |
914 | |
915 | Assert(subscripts != NIL); |
916 | |
917 | /* Identify the actual array type and element type involved */ |
918 | containerType = targetTypeId; |
919 | containerTypMod = targetTypMod; |
920 | elementTypeId = transformContainerType(&containerType, &containerTypMod); |
921 | |
922 | /* Identify type that RHS must provide */ |
923 | typeNeeded = isSlice ? containerType : elementTypeId; |
924 | |
925 | /* |
926 | * container normally has same collation as elements, but there's an |
927 | * exception: we might be subscripting a domain over a container type. In |
928 | * that case use collation of the base type. |
929 | */ |
930 | if (containerType == targetTypeId) |
931 | collationNeeded = targetCollation; |
932 | else |
933 | collationNeeded = get_typcollation(containerType); |
934 | |
935 | /* recurse to create appropriate RHS for container assign */ |
936 | rhs = transformAssignmentIndirection(pstate, |
937 | NULL, |
938 | targetName, |
939 | true, |
940 | typeNeeded, |
941 | containerTypMod, |
942 | collationNeeded, |
943 | indirection, |
944 | next_indirection, |
945 | rhs, |
946 | location); |
947 | |
948 | /* process subscripts */ |
949 | result = (Node *) transformContainerSubscripts(pstate, |
950 | basenode, |
951 | containerType, |
952 | elementTypeId, |
953 | containerTypMod, |
954 | subscripts, |
955 | rhs); |
956 | |
957 | /* If target was a domain over container, need to coerce up to the domain */ |
958 | if (containerType != targetTypeId) |
959 | { |
960 | Oid resulttype = exprType(result); |
961 | |
962 | result = coerce_to_target_type(pstate, |
963 | result, resulttype, |
964 | targetTypeId, targetTypMod, |
965 | COERCION_ASSIGNMENT, |
966 | COERCE_IMPLICIT_CAST, |
967 | -1); |
968 | /* can fail if we had int2vector/oidvector, but not for true domains */ |
969 | if (result == NULL) |
970 | ereport(ERROR, |
971 | (errcode(ERRCODE_CANNOT_COERCE), |
972 | errmsg("cannot cast type %s to %s", |
973 | format_type_be(resulttype), |
974 | format_type_be(targetTypeId)), |
975 | parser_errposition(pstate, location))); |
976 | } |
977 | |
978 | return result; |
979 | } |
980 | |
981 | |
982 | /* |
983 | * checkInsertTargets - |
984 | * generate a list of INSERT column targets if not supplied, or |
985 | * test supplied column names to make sure they are in target table. |
986 | * Also return an integer list of the columns' attribute numbers. |
987 | */ |
988 | List * |
989 | checkInsertTargets(ParseState *pstate, List *cols, List **attrnos) |
990 | { |
991 | *attrnos = NIL; |
992 | |
993 | if (cols == NIL) |
994 | { |
995 | /* |
996 | * Generate default column list for INSERT. |
997 | */ |
998 | int numcol = RelationGetNumberOfAttributes(pstate->p_target_relation); |
999 | |
1000 | int i; |
1001 | |
1002 | for (i = 0; i < numcol; i++) |
1003 | { |
1004 | ResTarget *col; |
1005 | Form_pg_attribute attr; |
1006 | |
1007 | attr = TupleDescAttr(pstate->p_target_relation->rd_att, i); |
1008 | |
1009 | if (attr->attisdropped) |
1010 | continue; |
1011 | |
1012 | col = makeNode(ResTarget); |
1013 | col->name = pstrdup(NameStr(attr->attname)); |
1014 | col->indirection = NIL; |
1015 | col->val = NULL; |
1016 | col->location = -1; |
1017 | cols = lappend(cols, col); |
1018 | *attrnos = lappend_int(*attrnos, i + 1); |
1019 | } |
1020 | } |
1021 | else |
1022 | { |
1023 | /* |
1024 | * Do initial validation of user-supplied INSERT column list. |
1025 | */ |
1026 | Bitmapset *wholecols = NULL; |
1027 | Bitmapset *partialcols = NULL; |
1028 | ListCell *tl; |
1029 | |
1030 | foreach(tl, cols) |
1031 | { |
1032 | ResTarget *col = (ResTarget *) lfirst(tl); |
1033 | char *name = col->name; |
1034 | int attrno; |
1035 | |
1036 | /* Lookup column name, ereport on failure */ |
1037 | attrno = attnameAttNum(pstate->p_target_relation, name, false); |
1038 | if (attrno == InvalidAttrNumber) |
1039 | ereport(ERROR, |
1040 | (errcode(ERRCODE_UNDEFINED_COLUMN), |
1041 | errmsg("column \"%s\" of relation \"%s\" does not exist", |
1042 | name, |
1043 | RelationGetRelationName(pstate->p_target_relation)), |
1044 | parser_errposition(pstate, col->location))); |
1045 | |
1046 | /* |
1047 | * Check for duplicates, but only of whole columns --- we allow |
1048 | * INSERT INTO foo (col.subcol1, col.subcol2) |
1049 | */ |
1050 | if (col->indirection == NIL) |
1051 | { |
1052 | /* whole column; must not have any other assignment */ |
1053 | if (bms_is_member(attrno, wholecols) || |
1054 | bms_is_member(attrno, partialcols)) |
1055 | ereport(ERROR, |
1056 | (errcode(ERRCODE_DUPLICATE_COLUMN), |
1057 | errmsg("column \"%s\" specified more than once", |
1058 | name), |
1059 | parser_errposition(pstate, col->location))); |
1060 | wholecols = bms_add_member(wholecols, attrno); |
1061 | } |
1062 | else |
1063 | { |
1064 | /* partial column; must not have any whole assignment */ |
1065 | if (bms_is_member(attrno, wholecols)) |
1066 | ereport(ERROR, |
1067 | (errcode(ERRCODE_DUPLICATE_COLUMN), |
1068 | errmsg("column \"%s\" specified more than once", |
1069 | name), |
1070 | parser_errposition(pstate, col->location))); |
1071 | partialcols = bms_add_member(partialcols, attrno); |
1072 | } |
1073 | |
1074 | *attrnos = lappend_int(*attrnos, attrno); |
1075 | } |
1076 | } |
1077 | |
1078 | return cols; |
1079 | } |
1080 | |
1081 | /* |
1082 | * ExpandColumnRefStar() |
1083 | * Transforms foo.* into a list of expressions or targetlist entries. |
1084 | * |
1085 | * This handles the case where '*' appears as the last or only item in a |
1086 | * ColumnRef. The code is shared between the case of foo.* at the top level |
1087 | * in a SELECT target list (where we want TargetEntry nodes in the result) |
1088 | * and foo.* in a ROW() or VALUES() construct (where we want just bare |
1089 | * expressions). |
1090 | * |
1091 | * The referenced columns are marked as requiring SELECT access. |
1092 | */ |
1093 | static List * |
1094 | ExpandColumnRefStar(ParseState *pstate, ColumnRef *cref, |
1095 | bool make_target_entry) |
1096 | { |
1097 | List *fields = cref->fields; |
1098 | int numnames = list_length(fields); |
1099 | |
1100 | if (numnames == 1) |
1101 | { |
1102 | /* |
1103 | * Target item is a bare '*', expand all tables |
1104 | * |
1105 | * (e.g., SELECT * FROM emp, dept) |
1106 | * |
1107 | * Since the grammar only accepts bare '*' at top level of SELECT, we |
1108 | * need not handle the make_target_entry==false case here. |
1109 | */ |
1110 | Assert(make_target_entry); |
1111 | return ExpandAllTables(pstate, cref->location); |
1112 | } |
1113 | else |
1114 | { |
1115 | /* |
1116 | * Target item is relation.*, expand that table |
1117 | * |
1118 | * (e.g., SELECT emp.*, dname FROM emp, dept) |
1119 | * |
1120 | * Note: this code is a lot like transformColumnRef; it's tempting to |
1121 | * call that instead and then replace the resulting whole-row Var with |
1122 | * a list of Vars. However, that would leave us with the RTE's |
1123 | * selectedCols bitmap showing the whole row as needing select |
1124 | * permission, as well as the individual columns. That would be |
1125 | * incorrect (since columns added later shouldn't need select |
1126 | * permissions). We could try to remove the whole-row permission bit |
1127 | * after the fact, but duplicating code is less messy. |
1128 | */ |
1129 | char *nspname = NULL; |
1130 | char *relname = NULL; |
1131 | RangeTblEntry *rte = NULL; |
1132 | int levels_up; |
1133 | enum |
1134 | { |
1135 | CRSERR_NO_RTE, |
1136 | CRSERR_WRONG_DB, |
1137 | CRSERR_TOO_MANY |
1138 | } crserr = CRSERR_NO_RTE; |
1139 | |
1140 | /* |
1141 | * Give the PreParseColumnRefHook, if any, first shot. If it returns |
1142 | * non-null then we should use that expression. |
1143 | */ |
1144 | if (pstate->p_pre_columnref_hook != NULL) |
1145 | { |
1146 | Node *node; |
1147 | |
1148 | node = pstate->p_pre_columnref_hook(pstate, cref); |
1149 | if (node != NULL) |
1150 | return ExpandRowReference(pstate, node, make_target_entry); |
1151 | } |
1152 | |
1153 | switch (numnames) |
1154 | { |
1155 | case 2: |
1156 | relname = strVal(linitial(fields)); |
1157 | rte = refnameRangeTblEntry(pstate, nspname, relname, |
1158 | cref->location, |
1159 | &levels_up); |
1160 | break; |
1161 | case 3: |
1162 | nspname = strVal(linitial(fields)); |
1163 | relname = strVal(lsecond(fields)); |
1164 | rte = refnameRangeTblEntry(pstate, nspname, relname, |
1165 | cref->location, |
1166 | &levels_up); |
1167 | break; |
1168 | case 4: |
1169 | { |
1170 | char *catname = strVal(linitial(fields)); |
1171 | |
1172 | /* |
1173 | * We check the catalog name and then ignore it. |
1174 | */ |
1175 | if (strcmp(catname, get_database_name(MyDatabaseId)) != 0) |
1176 | { |
1177 | crserr = CRSERR_WRONG_DB; |
1178 | break; |
1179 | } |
1180 | nspname = strVal(lsecond(fields)); |
1181 | relname = strVal(lthird(fields)); |
1182 | rte = refnameRangeTblEntry(pstate, nspname, relname, |
1183 | cref->location, |
1184 | &levels_up); |
1185 | break; |
1186 | } |
1187 | default: |
1188 | crserr = CRSERR_TOO_MANY; |
1189 | break; |
1190 | } |
1191 | |
1192 | /* |
1193 | * Now give the PostParseColumnRefHook, if any, a chance. We cheat a |
1194 | * bit by passing the RangeTblEntry, not a Var, as the planned |
1195 | * translation. (A single Var wouldn't be strictly correct anyway. |
1196 | * This convention allows hooks that really care to know what is |
1197 | * happening.) |
1198 | */ |
1199 | if (pstate->p_post_columnref_hook != NULL) |
1200 | { |
1201 | Node *node; |
1202 | |
1203 | node = pstate->p_post_columnref_hook(pstate, cref, |
1204 | (Node *) rte); |
1205 | if (node != NULL) |
1206 | { |
1207 | if (rte != NULL) |
1208 | ereport(ERROR, |
1209 | (errcode(ERRCODE_AMBIGUOUS_COLUMN), |
1210 | errmsg("column reference \"%s\" is ambiguous", |
1211 | NameListToString(cref->fields)), |
1212 | parser_errposition(pstate, cref->location))); |
1213 | return ExpandRowReference(pstate, node, make_target_entry); |
1214 | } |
1215 | } |
1216 | |
1217 | /* |
1218 | * Throw error if no translation found. |
1219 | */ |
1220 | if (rte == NULL) |
1221 | { |
1222 | switch (crserr) |
1223 | { |
1224 | case CRSERR_NO_RTE: |
1225 | errorMissingRTE(pstate, makeRangeVar(nspname, relname, |
1226 | cref->location)); |
1227 | break; |
1228 | case CRSERR_WRONG_DB: |
1229 | ereport(ERROR, |
1230 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
1231 | errmsg("cross-database references are not implemented: %s", |
1232 | NameListToString(cref->fields)), |
1233 | parser_errposition(pstate, cref->location))); |
1234 | break; |
1235 | case CRSERR_TOO_MANY: |
1236 | ereport(ERROR, |
1237 | (errcode(ERRCODE_SYNTAX_ERROR), |
1238 | errmsg("improper qualified name (too many dotted names): %s", |
1239 | NameListToString(cref->fields)), |
1240 | parser_errposition(pstate, cref->location))); |
1241 | break; |
1242 | } |
1243 | } |
1244 | |
1245 | /* |
1246 | * OK, expand the RTE into fields. |
1247 | */ |
1248 | return ExpandSingleTable(pstate, rte, cref->location, make_target_entry); |
1249 | } |
1250 | } |
1251 | |
1252 | /* |
1253 | * ExpandAllTables() |
1254 | * Transforms '*' (in the target list) into a list of targetlist entries. |
1255 | * |
1256 | * tlist entries are generated for each relation visible for unqualified |
1257 | * column name access. We do not consider qualified-name-only entries because |
1258 | * that would include input tables of aliasless JOINs, NEW/OLD pseudo-entries, |
1259 | * etc. |
1260 | * |
1261 | * The referenced relations/columns are marked as requiring SELECT access. |
1262 | */ |
1263 | static List * |
1264 | ExpandAllTables(ParseState *pstate, int location) |
1265 | { |
1266 | List *target = NIL; |
1267 | bool found_table = false; |
1268 | ListCell *l; |
1269 | |
1270 | foreach(l, pstate->p_namespace) |
1271 | { |
1272 | ParseNamespaceItem *nsitem = (ParseNamespaceItem *) lfirst(l); |
1273 | RangeTblEntry *rte = nsitem->p_rte; |
1274 | |
1275 | /* Ignore table-only items */ |
1276 | if (!nsitem->p_cols_visible) |
1277 | continue; |
1278 | /* Should not have any lateral-only items when parsing targetlist */ |
1279 | Assert(!nsitem->p_lateral_only); |
1280 | /* Remember we found a p_cols_visible item */ |
1281 | found_table = true; |
1282 | |
1283 | target = list_concat(target, |
1284 | expandRelAttrs(pstate, |
1285 | rte, |
1286 | RTERangeTablePosn(pstate, rte, |
1287 | NULL), |
1288 | 0, |
1289 | location)); |
1290 | } |
1291 | |
1292 | /* |
1293 | * Check for "SELECT *;". We do it this way, rather than checking for |
1294 | * target == NIL, because we want to allow SELECT * FROM a zero_column |
1295 | * table. |
1296 | */ |
1297 | if (!found_table) |
1298 | ereport(ERROR, |
1299 | (errcode(ERRCODE_SYNTAX_ERROR), |
1300 | errmsg("SELECT * with no tables specified is not valid"), |
1301 | parser_errposition(pstate, location))); |
1302 | |
1303 | return target; |
1304 | } |
1305 | |
1306 | /* |
1307 | * ExpandIndirectionStar() |
1308 | * Transforms foo.* into a list of expressions or targetlist entries. |
1309 | * |
1310 | * This handles the case where '*' appears as the last item in A_Indirection. |
1311 | * The code is shared between the case of foo.* at the top level in a SELECT |
1312 | * target list (where we want TargetEntry nodes in the result) and foo.* in |
1313 | * a ROW() or VALUES() construct (where we want just bare expressions). |
1314 | * For robustness, we use a separate "make_target_entry" flag to control |
1315 | * this rather than relying on exprKind. |
1316 | */ |
1317 | static List * |
1318 | ExpandIndirectionStar(ParseState *pstate, A_Indirection *ind, |
1319 | bool make_target_entry, ParseExprKind exprKind) |
1320 | { |
1321 | Node *expr; |
1322 | |
1323 | /* Strip off the '*' to create a reference to the rowtype object */ |
1324 | ind = copyObject(ind); |
1325 | ind->indirection = list_truncate(ind->indirection, |
1326 | list_length(ind->indirection) - 1); |
1327 | |
1328 | /* And transform that */ |
1329 | expr = transformExpr(pstate, (Node *) ind, exprKind); |
1330 | |
1331 | /* Expand the rowtype expression into individual fields */ |
1332 | return ExpandRowReference(pstate, expr, make_target_entry); |
1333 | } |
1334 | |
1335 | /* |
1336 | * ExpandSingleTable() |
1337 | * Transforms foo.* into a list of expressions or targetlist entries. |
1338 | * |
1339 | * This handles the case where foo has been determined to be a simple |
1340 | * reference to an RTE, so we can just generate Vars for the expressions. |
1341 | * |
1342 | * The referenced columns are marked as requiring SELECT access. |
1343 | */ |
1344 | static List * |
1345 | ExpandSingleTable(ParseState *pstate, RangeTblEntry *rte, |
1346 | int location, bool make_target_entry) |
1347 | { |
1348 | int sublevels_up; |
1349 | int rtindex; |
1350 | |
1351 | rtindex = RTERangeTablePosn(pstate, rte, &sublevels_up); |
1352 | |
1353 | if (make_target_entry) |
1354 | { |
1355 | /* expandRelAttrs handles permissions marking */ |
1356 | return expandRelAttrs(pstate, rte, rtindex, sublevels_up, |
1357 | location); |
1358 | } |
1359 | else |
1360 | { |
1361 | List *vars; |
1362 | ListCell *l; |
1363 | |
1364 | expandRTE(rte, rtindex, sublevels_up, location, false, |
1365 | NULL, &vars); |
1366 | |
1367 | /* |
1368 | * Require read access to the table. This is normally redundant with |
1369 | * the markVarForSelectPriv calls below, but not if the table has zero |
1370 | * columns. |
1371 | */ |
1372 | rte->requiredPerms |= ACL_SELECT; |
1373 | |
1374 | /* Require read access to each column */ |
1375 | foreach(l, vars) |
1376 | { |
1377 | Var *var = (Var *) lfirst(l); |
1378 | |
1379 | markVarForSelectPriv(pstate, var, rte); |
1380 | } |
1381 | |
1382 | return vars; |
1383 | } |
1384 | } |
1385 | |
1386 | /* |
1387 | * ExpandRowReference() |
1388 | * Transforms foo.* into a list of expressions or targetlist entries. |
1389 | * |
1390 | * This handles the case where foo is an arbitrary expression of composite |
1391 | * type. |
1392 | */ |
1393 | static List * |
1394 | ExpandRowReference(ParseState *pstate, Node *expr, |
1395 | bool make_target_entry) |
1396 | { |
1397 | List *result = NIL; |
1398 | TupleDesc tupleDesc; |
1399 | int numAttrs; |
1400 | int i; |
1401 | |
1402 | /* |
1403 | * If the rowtype expression is a whole-row Var, we can expand the fields |
1404 | * as simple Vars. Note: if the RTE is a relation, this case leaves us |
1405 | * with the RTE's selectedCols bitmap showing the whole row as needing |
1406 | * select permission, as well as the individual columns. However, we can |
1407 | * only get here for weird notations like (table.*).*, so it's not worth |
1408 | * trying to clean up --- arguably, the permissions marking is correct |
1409 | * anyway for such cases. |
1410 | */ |
1411 | if (IsA(expr, Var) && |
1412 | ((Var *) expr)->varattno == InvalidAttrNumber) |
1413 | { |
1414 | Var *var = (Var *) expr; |
1415 | RangeTblEntry *rte; |
1416 | |
1417 | rte = GetRTEByRangeTablePosn(pstate, var->varno, var->varlevelsup); |
1418 | return ExpandSingleTable(pstate, rte, var->location, make_target_entry); |
1419 | } |
1420 | |
1421 | /* |
1422 | * Otherwise we have to do it the hard way. Our current implementation is |
1423 | * to generate multiple copies of the expression and do FieldSelects. |
1424 | * (This can be pretty inefficient if the expression involves nontrivial |
1425 | * computation :-(.) |
1426 | * |
1427 | * Verify it's a composite type, and get the tupdesc. |
1428 | * get_expr_result_tupdesc() handles this conveniently. |
1429 | * |
1430 | * If it's a Var of type RECORD, we have to work even harder: we have to |
1431 | * find what the Var refers to, and pass that to get_expr_result_tupdesc. |
1432 | * That task is handled by expandRecordVariable(). |
1433 | */ |
1434 | if (IsA(expr, Var) && |
1435 | ((Var *) expr)->vartype == RECORDOID) |
1436 | tupleDesc = expandRecordVariable(pstate, (Var *) expr, 0); |
1437 | else |
1438 | tupleDesc = get_expr_result_tupdesc(expr, false); |
1439 | Assert(tupleDesc); |
1440 | |
1441 | /* Generate a list of references to the individual fields */ |
1442 | numAttrs = tupleDesc->natts; |
1443 | for (i = 0; i < numAttrs; i++) |
1444 | { |
1445 | Form_pg_attribute att = TupleDescAttr(tupleDesc, i); |
1446 | FieldSelect *fselect; |
1447 | |
1448 | if (att->attisdropped) |
1449 | continue; |
1450 | |
1451 | fselect = makeNode(FieldSelect); |
1452 | fselect->arg = (Expr *) copyObject(expr); |
1453 | fselect->fieldnum = i + 1; |
1454 | fselect->resulttype = att->atttypid; |
1455 | fselect->resulttypmod = att->atttypmod; |
1456 | /* save attribute's collation for parse_collate.c */ |
1457 | fselect->resultcollid = att->attcollation; |
1458 | |
1459 | if (make_target_entry) |
1460 | { |
1461 | /* add TargetEntry decoration */ |
1462 | TargetEntry *te; |
1463 | |
1464 | te = makeTargetEntry((Expr *) fselect, |
1465 | (AttrNumber) pstate->p_next_resno++, |
1466 | pstrdup(NameStr(att->attname)), |
1467 | false); |
1468 | result = lappend(result, te); |
1469 | } |
1470 | else |
1471 | result = lappend(result, fselect); |
1472 | } |
1473 | |
1474 | return result; |
1475 | } |
1476 | |
1477 | /* |
1478 | * expandRecordVariable |
1479 | * Get the tuple descriptor for a Var of type RECORD, if possible. |
1480 | * |
1481 | * Since no actual table or view column is allowed to have type RECORD, such |
1482 | * a Var must refer to a JOIN or FUNCTION RTE or to a subquery output. We |
1483 | * drill down to find the ultimate defining expression and attempt to infer |
1484 | * the tupdesc from it. We ereport if we can't determine the tupdesc. |
1485 | * |
1486 | * levelsup is an extra offset to interpret the Var's varlevelsup correctly. |
1487 | */ |
1488 | TupleDesc |
1489 | expandRecordVariable(ParseState *pstate, Var *var, int levelsup) |
1490 | { |
1491 | TupleDesc tupleDesc; |
1492 | int netlevelsup; |
1493 | RangeTblEntry *rte; |
1494 | AttrNumber attnum; |
1495 | Node *expr; |
1496 | |
1497 | /* Check my caller didn't mess up */ |
1498 | Assert(IsA(var, Var)); |
1499 | Assert(var->vartype == RECORDOID); |
1500 | |
1501 | netlevelsup = var->varlevelsup + levelsup; |
1502 | rte = GetRTEByRangeTablePosn(pstate, var->varno, netlevelsup); |
1503 | attnum = var->varattno; |
1504 | |
1505 | if (attnum == InvalidAttrNumber) |
1506 | { |
1507 | /* Whole-row reference to an RTE, so expand the known fields */ |
1508 | List *names, |
1509 | *vars; |
1510 | ListCell *lname, |
1511 | *lvar; |
1512 | int i; |
1513 | |
1514 | expandRTE(rte, var->varno, 0, var->location, false, |
1515 | &names, &vars); |
1516 | |
1517 | tupleDesc = CreateTemplateTupleDesc(list_length(vars)); |
1518 | i = 1; |
1519 | forboth(lname, names, lvar, vars) |
1520 | { |
1521 | char *label = strVal(lfirst(lname)); |
1522 | Node *varnode = (Node *) lfirst(lvar); |
1523 | |
1524 | TupleDescInitEntry(tupleDesc, i, |
1525 | label, |
1526 | exprType(varnode), |
1527 | exprTypmod(varnode), |
1528 | 0); |
1529 | TupleDescInitEntryCollation(tupleDesc, i, |
1530 | exprCollation(varnode)); |
1531 | i++; |
1532 | } |
1533 | Assert(lname == NULL && lvar == NULL); /* lists same length? */ |
1534 | |
1535 | return tupleDesc; |
1536 | } |
1537 | |
1538 | expr = (Node *) var; /* default if we can't drill down */ |
1539 | |
1540 | switch (rte->rtekind) |
1541 | { |
1542 | case RTE_RELATION: |
1543 | case RTE_VALUES: |
1544 | case RTE_NAMEDTUPLESTORE: |
1545 | case RTE_RESULT: |
1546 | |
1547 | /* |
1548 | * This case should not occur: a column of a table, values list, |
1549 | * or ENR shouldn't have type RECORD. Fall through and fail (most |
1550 | * likely) at the bottom. |
1551 | */ |
1552 | break; |
1553 | case RTE_SUBQUERY: |
1554 | { |
1555 | /* Subselect-in-FROM: examine sub-select's output expr */ |
1556 | TargetEntry *ste = get_tle_by_resno(rte->subquery->targetList, |
1557 | attnum); |
1558 | |
1559 | if (ste == NULL || ste->resjunk) |
1560 | elog(ERROR, "subquery %s does not have attribute %d", |
1561 | rte->eref->aliasname, attnum); |
1562 | expr = (Node *) ste->expr; |
1563 | if (IsA(expr, Var)) |
1564 | { |
1565 | /* |
1566 | * Recurse into the sub-select to see what its Var refers |
1567 | * to. We have to build an additional level of ParseState |
1568 | * to keep in step with varlevelsup in the subselect. |
1569 | */ |
1570 | ParseState mypstate; |
1571 | |
1572 | MemSet(&mypstate, 0, sizeof(mypstate)); |
1573 | mypstate.parentParseState = pstate; |
1574 | mypstate.p_rtable = rte->subquery->rtable; |
1575 | /* don't bother filling the rest of the fake pstate */ |
1576 | |
1577 | return expandRecordVariable(&mypstate, (Var *) expr, 0); |
1578 | } |
1579 | /* else fall through to inspect the expression */ |
1580 | } |
1581 | break; |
1582 | case RTE_JOIN: |
1583 | /* Join RTE --- recursively inspect the alias variable */ |
1584 | Assert(attnum > 0 && attnum <= list_length(rte->joinaliasvars)); |
1585 | expr = (Node *) list_nth(rte->joinaliasvars, attnum - 1); |
1586 | Assert(expr != NULL); |
1587 | /* We intentionally don't strip implicit coercions here */ |
1588 | if (IsA(expr, Var)) |
1589 | return expandRecordVariable(pstate, (Var *) expr, netlevelsup); |
1590 | /* else fall through to inspect the expression */ |
1591 | break; |
1592 | case RTE_FUNCTION: |
1593 | |
1594 | /* |
1595 | * We couldn't get here unless a function is declared with one of |
1596 | * its result columns as RECORD, which is not allowed. |
1597 | */ |
1598 | break; |
1599 | case RTE_TABLEFUNC: |
1600 | |
1601 | /* |
1602 | * Table function cannot have columns with RECORD type. |
1603 | */ |
1604 | break; |
1605 | case RTE_CTE: |
1606 | /* CTE reference: examine subquery's output expr */ |
1607 | if (!rte->self_reference) |
1608 | { |
1609 | CommonTableExpr *cte = GetCTEForRTE(pstate, rte, netlevelsup); |
1610 | TargetEntry *ste; |
1611 | |
1612 | ste = get_tle_by_resno(GetCTETargetList(cte), attnum); |
1613 | if (ste == NULL || ste->resjunk) |
1614 | elog(ERROR, "subquery %s does not have attribute %d", |
1615 | rte->eref->aliasname, attnum); |
1616 | expr = (Node *) ste->expr; |
1617 | if (IsA(expr, Var)) |
1618 | { |
1619 | /* |
1620 | * Recurse into the CTE to see what its Var refers to. We |
1621 | * have to build an additional level of ParseState to keep |
1622 | * in step with varlevelsup in the CTE; furthermore it |
1623 | * could be an outer CTE. |
1624 | */ |
1625 | ParseState mypstate; |
1626 | Index levelsup; |
1627 | |
1628 | MemSet(&mypstate, 0, sizeof(mypstate)); |
1629 | /* this loop must work, since GetCTEForRTE did */ |
1630 | for (levelsup = 0; |
1631 | levelsup < rte->ctelevelsup + netlevelsup; |
1632 | levelsup++) |
1633 | pstate = pstate->parentParseState; |
1634 | mypstate.parentParseState = pstate; |
1635 | mypstate.p_rtable = ((Query *) cte->ctequery)->rtable; |
1636 | /* don't bother filling the rest of the fake pstate */ |
1637 | |
1638 | return expandRecordVariable(&mypstate, (Var *) expr, 0); |
1639 | } |
1640 | /* else fall through to inspect the expression */ |
1641 | } |
1642 | break; |
1643 | } |
1644 | |
1645 | /* |
1646 | * We now have an expression we can't expand any more, so see if |
1647 | * get_expr_result_tupdesc() can do anything with it. |
1648 | */ |
1649 | return get_expr_result_tupdesc(expr, false); |
1650 | } |
1651 | |
1652 | |
1653 | /* |
1654 | * FigureColname - |
1655 | * if the name of the resulting column is not specified in the target |
1656 | * list, we have to guess a suitable name. The SQL spec provides some |
1657 | * guidance, but not much... |
1658 | * |
1659 | * Note that the argument is the *untransformed* parse tree for the target |
1660 | * item. This is a shade easier to work with than the transformed tree. |
1661 | */ |
1662 | char * |
1663 | FigureColname(Node *node) |
1664 | { |
1665 | char *name = NULL; |
1666 | |
1667 | (void) FigureColnameInternal(node, &name); |
1668 | if (name != NULL) |
1669 | return name; |
1670 | /* default result if we can't guess anything */ |
1671 | return "?column?"; |
1672 | } |
1673 | |
1674 | /* |
1675 | * FigureIndexColname - |
1676 | * choose the name for an expression column in an index |
1677 | * |
1678 | * This is actually just like FigureColname, except we return NULL if |
1679 | * we can't pick a good name. |
1680 | */ |
1681 | char * |
1682 | FigureIndexColname(Node *node) |
1683 | { |
1684 | char *name = NULL; |
1685 | |
1686 | (void) FigureColnameInternal(node, &name); |
1687 | return name; |
1688 | } |
1689 | |
1690 | /* |
1691 | * FigureColnameInternal - |
1692 | * internal workhorse for FigureColname |
1693 | * |
1694 | * Return value indicates strength of confidence in result: |
1695 | * 0 - no information |
1696 | * 1 - second-best name choice |
1697 | * 2 - good name choice |
1698 | * The return value is actually only used internally. |
1699 | * If the result isn't zero, *name is set to the chosen name. |
1700 | */ |
1701 | static int |
1702 | FigureColnameInternal(Node *node, char **name) |
1703 | { |
1704 | int strength = 0; |
1705 | |
1706 | if (node == NULL) |
1707 | return strength; |
1708 | |
1709 | switch (nodeTag(node)) |
1710 | { |
1711 | case T_ColumnRef: |
1712 | { |
1713 | char *fname = NULL; |
1714 | ListCell *l; |
1715 | |
1716 | /* find last field name, if any, ignoring "*" */ |
1717 | foreach(l, ((ColumnRef *) node)->fields) |
1718 | { |
1719 | Node *i = lfirst(l); |
1720 | |
1721 | if (IsA(i, String)) |
1722 | fname = strVal(i); |
1723 | } |
1724 | if (fname) |
1725 | { |
1726 | *name = fname; |
1727 | return 2; |
1728 | } |
1729 | } |
1730 | break; |
1731 | case T_A_Indirection: |
1732 | { |
1733 | A_Indirection *ind = (A_Indirection *) node; |
1734 | char *fname = NULL; |
1735 | ListCell *l; |
1736 | |
1737 | /* find last field name, if any, ignoring "*" and subscripts */ |
1738 | foreach(l, ind->indirection) |
1739 | { |
1740 | Node *i = lfirst(l); |
1741 | |
1742 | if (IsA(i, String)) |
1743 | fname = strVal(i); |
1744 | } |
1745 | if (fname) |
1746 | { |
1747 | *name = fname; |
1748 | return 2; |
1749 | } |
1750 | return FigureColnameInternal(ind->arg, name); |
1751 | } |
1752 | break; |
1753 | case T_FuncCall: |
1754 | *name = strVal(llast(((FuncCall *) node)->funcname)); |
1755 | return 2; |
1756 | case T_A_Expr: |
1757 | if (((A_Expr *) node)->kind == AEXPR_NULLIF) |
1758 | { |
1759 | /* make nullif() act like a regular function */ |
1760 | *name = "nullif"; |
1761 | return 2; |
1762 | } |
1763 | if (((A_Expr *) node)->kind == AEXPR_PAREN) |
1764 | { |
1765 | /* look through dummy parenthesis node */ |
1766 | return FigureColnameInternal(((A_Expr *) node)->lexpr, name); |
1767 | } |
1768 | break; |
1769 | case T_TypeCast: |
1770 | strength = FigureColnameInternal(((TypeCast *) node)->arg, |
1771 | name); |
1772 | if (strength <= 1) |
1773 | { |
1774 | if (((TypeCast *) node)->typeName != NULL) |
1775 | { |
1776 | *name = strVal(llast(((TypeCast *) node)->typeName->names)); |
1777 | return 1; |
1778 | } |
1779 | } |
1780 | break; |
1781 | case T_CollateClause: |
1782 | return FigureColnameInternal(((CollateClause *) node)->arg, name); |
1783 | case T_GroupingFunc: |
1784 | /* make GROUPING() act like a regular function */ |
1785 | *name = "grouping"; |
1786 | return 2; |
1787 | case T_SubLink: |
1788 | switch (((SubLink *) node)->subLinkType) |
1789 | { |
1790 | case EXISTS_SUBLINK: |
1791 | *name = "exists"; |
1792 | return 2; |
1793 | case ARRAY_SUBLINK: |
1794 | *name = "array"; |
1795 | return 2; |
1796 | case EXPR_SUBLINK: |
1797 | { |
1798 | /* Get column name of the subquery's single target */ |
1799 | SubLink *sublink = (SubLink *) node; |
1800 | Query *query = (Query *) sublink->subselect; |
1801 | |
1802 | /* |
1803 | * The subquery has probably already been transformed, |
1804 | * but let's be careful and check that. (The reason |
1805 | * we can see a transformed subquery here is that |
1806 | * transformSubLink is lazy and modifies the SubLink |
1807 | * node in-place.) |
1808 | */ |
1809 | if (IsA(query, Query)) |
1810 | { |
1811 | TargetEntry *te = (TargetEntry *) linitial(query->targetList); |
1812 | |
1813 | if (te->resname) |
1814 | { |
1815 | *name = te->resname; |
1816 | return 2; |
1817 | } |
1818 | } |
1819 | } |
1820 | break; |
1821 | /* As with other operator-like nodes, these have no names */ |
1822 | case MULTIEXPR_SUBLINK: |
1823 | case ALL_SUBLINK: |
1824 | case ANY_SUBLINK: |
1825 | case ROWCOMPARE_SUBLINK: |
1826 | case CTE_SUBLINK: |
1827 | break; |
1828 | } |
1829 | break; |
1830 | case T_CaseExpr: |
1831 | strength = FigureColnameInternal((Node *) ((CaseExpr *) node)->defresult, |
1832 | name); |
1833 | if (strength <= 1) |
1834 | { |
1835 | *name = "case"; |
1836 | return 1; |
1837 | } |
1838 | break; |
1839 | case T_A_ArrayExpr: |
1840 | /* make ARRAY[] act like a function */ |
1841 | *name = "array"; |
1842 | return 2; |
1843 | case T_RowExpr: |
1844 | /* make ROW() act like a function */ |
1845 | *name = "row"; |
1846 | return 2; |
1847 | case T_CoalesceExpr: |
1848 | /* make coalesce() act like a regular function */ |
1849 | *name = "coalesce"; |
1850 | return 2; |
1851 | case T_MinMaxExpr: |
1852 | /* make greatest/least act like a regular function */ |
1853 | switch (((MinMaxExpr *) node)->op) |
1854 | { |
1855 | case IS_GREATEST: |
1856 | *name = "greatest"; |
1857 | return 2; |
1858 | case IS_LEAST: |
1859 | *name = "least"; |
1860 | return 2; |
1861 | } |
1862 | break; |
1863 | case T_SQLValueFunction: |
1864 | /* make these act like a function or variable */ |
1865 | switch (((SQLValueFunction *) node)->op) |
1866 | { |
1867 | case SVFOP_CURRENT_DATE: |
1868 | *name = "current_date"; |
1869 | return 2; |
1870 | case SVFOP_CURRENT_TIME: |
1871 | case SVFOP_CURRENT_TIME_N: |
1872 | *name = "current_time"; |
1873 | return 2; |
1874 | case SVFOP_CURRENT_TIMESTAMP: |
1875 | case SVFOP_CURRENT_TIMESTAMP_N: |
1876 | *name = "current_timestamp"; |
1877 | return 2; |
1878 | case SVFOP_LOCALTIME: |
1879 | case SVFOP_LOCALTIME_N: |
1880 | *name = "localtime"; |
1881 | return 2; |
1882 | case SVFOP_LOCALTIMESTAMP: |
1883 | case SVFOP_LOCALTIMESTAMP_N: |
1884 | *name = "localtimestamp"; |
1885 | return 2; |
1886 | case SVFOP_CURRENT_ROLE: |
1887 | *name = "current_role"; |
1888 | return 2; |
1889 | case SVFOP_CURRENT_USER: |
1890 | *name = "current_user"; |
1891 | return 2; |
1892 | case SVFOP_USER: |
1893 | *name = "user"; |
1894 | return 2; |
1895 | case SVFOP_SESSION_USER: |
1896 | *name = "session_user"; |
1897 | return 2; |
1898 | case SVFOP_CURRENT_CATALOG: |
1899 | *name = "current_catalog"; |
1900 | return 2; |
1901 | case SVFOP_CURRENT_SCHEMA: |
1902 | *name = "current_schema"; |
1903 | return 2; |
1904 | } |
1905 | break; |
1906 | case T_XmlExpr: |
1907 | /* make SQL/XML functions act like a regular function */ |
1908 | switch (((XmlExpr *) node)->op) |
1909 | { |
1910 | case IS_XMLCONCAT: |
1911 | *name = "xmlconcat"; |
1912 | return 2; |
1913 | case IS_XMLELEMENT: |
1914 | *name = "xmlelement"; |
1915 | return 2; |
1916 | case IS_XMLFOREST: |
1917 | *name = "xmlforest"; |
1918 | return 2; |
1919 | case IS_XMLPARSE: |
1920 | *name = "xmlparse"; |
1921 | return 2; |
1922 | case IS_XMLPI: |
1923 | *name = "xmlpi"; |
1924 | return 2; |
1925 | case IS_XMLROOT: |
1926 | *name = "xmlroot"; |
1927 | return 2; |
1928 | case IS_XMLSERIALIZE: |
1929 | *name = "xmlserialize"; |
1930 | return 2; |
1931 | case IS_DOCUMENT: |
1932 | /* nothing */ |
1933 | break; |
1934 | } |
1935 | break; |
1936 | case T_XmlSerialize: |
1937 | *name = "xmlserialize"; |
1938 | return 2; |
1939 | default: |
1940 | break; |
1941 | } |
1942 | |
1943 | return strength; |
1944 | } |